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ABSTRACT

The Earth is a complex dynamic and networked system. For the past few decades, a large number
of extreme weather and climate events in Europe and worldwide have occurred which resulted in
infrastructure damages and many casualties. Agricultural drought and wildfires are examples of some
of the most critical hazards in terms of frequency, severity and impact on livelihoods. Detecting such
extremes and anomalies is of paramount relevance to mitigate impacts and incorporating prevention
measures. However, the phenomena are difficult to predict as they are complex and depend on
many factors. A vast suite of approaches have been developed to monitor and characterize e.g.
agricultural drought, based on either climatic ground-based data, soil moisture data or a variety of
remote-sensing drought proxies. A recently proposed Soil Moisture Agricultural Drought Index
(SMADI) is a simple and intuitive index that determines agricultural drought events based on key
remote sensing indicators: land surface temperature (LST), vegetation indices (e.g., the NDVI) and
surface soil moisture (SSM). While indices like SMADI and other alternative hand-crafted indices
have been widely adopted and used in real practice yielding good results, they often ignore the
complex nonlinear and multidimensional variable relations in the problem. In recent years, statistical
machine learning (ML) has played a role in Earth observation data problems with positive results
in problems like classification and anomaly detection. Machine learning can actually cope with
multivariate and multiple source data sources and allows one to automatically detect anomalies. There
is a plethora of ML algorithms for anomaly detection (AD), ranging from simple histogram-based
models to more advanced hierarchical density-based clustering algorithms. Each has its advantages
and disadvantages, but often need the help of user expertise and process understanding to improve
results. In this work we introduce the application of a hybrid approach based on state-of-the-art ML
anomaly detection methods and standard drought indices like SMADI for drought detection. We will
illustrate the performance in the Earth System Data Lab (ESDL), a light-weight platform for Earth
observation data analysis in the cloud. The ESDL allows to evaluate algorithms in a wide range of
harmonized products including more than 40 variables spanning more than 10 years. The included
variables account for atmospheric conditions, climate states, and terrestrial biosphere. Extracting
anomalous events is possible with the multivariate spatial-temporal information contained within
the Earth datacubes using advanced hybrid ML modeling. Algorithms will be compared in terms of
accuracy, robustness and computational efficiency in selected examples of droughts in Europe during
the last decade.
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Figure 1: Physics-Aware Machine Learning

1 Introduction

According to climate projections, extreme events are likely to increase in frequency and intensity over the coming years
[1]. In addition to frequency and intensity, some extreme events (such as droughts) are characterized by its area of
impact as well as its effect on society. There are many studies that incorporate optical and microwave Earth observation
(EO) data in drought detection for operation agricultural monitoring services [2]. Basic variables such as LST and
NDVI derived from optical Earth observation and soil moisture (SM) and vegetation optical depth (VOD) [3] derived
from microwave Earth observation are just a few of the many features that have been used in the context of drought
detection. In addition, we have some newer indices such as the Soil Moisture Agricultural Drought Index (SMADI) [4]
which is used as a global estimator specifically for agricultural drought. This is an index that uses the combination of
NDVI, LST and SM that was assessed and validated versus known agricultural drought indices; e.g. the Soil Water
Deficit Index (SWDI) [5] and the Crop Moisture Index (CMI) [6]. An intelligent combination of all of these variables
(e.g. SMADI) provides a great opportunity to really capture the relationships and help the agricultural community with
drought warning systems.

Like SMADI, often the inclusion of these variables was found to perform much better, was physically motivated and
included intensity factors. However the calibration process can be lengthy and may not have captured all relationships
between the data. With more data at higher spatial and temporal resolutions, this calibration process can hinder progress
and may not be robust enough to the large amounts of data streams. With regards to the data accessibility, we have three
important components in the modern age of ’Big Data’: a) we have a huge volume of data which increases as much as
terabytes and petabytes daily; b) there is a wide variety of data that is accumulated from many different sources like
active sensing and ground measures at different spatial, spectral and temporal resolutions; and c) the speed at which we
accumulate data is increasing and sometimes on the order of seconds requiring many fast and efficient pre-processing
and storage mechanisms. The Earth Science Data Lab (ESDL) 1 is an upcoming platform that provides an opportunity
for data centric processing methodologies as it is a central platform with easy access to multiple streams of data.
That coupled with cloud computing facilities enables us to prototype many approaches with a central environment for
processing and sharing of results. Our target application is drought detection whereby we use the previously mentioned
variables. However, we would like to approach the problem from a different perspective, that of machine learning.

X = x(u, v, t, z)

where u is the longitude, v is the latitude, t is the time and z is the variable.

There are many applications nowadays that require data analysis to filter outliers ranging from credit fraud in banking
to extreme events in Earth observation data. In machine learning, we define anomalies as observations which deviate
sufficiently from the likely trend where we assume were generated by a different process than the norm. The observations
themselves, we can define as outliers when they are sufficiently numerous than the standard distribution; e.g. 5%-10%.
One has to be careful because in Machine learning (ML) algorithms as there is always some noise, ε associated with the
learning procedure. So distinguishing between real data, noisy data, and outlier data can be a difficult task. Extreme
events present a challenging task for ML as the amount of extreme labels present are often much less than the number of
non-extreme labels which poses a difficult class imbalance problem [7]. Furthermore, the definition of extreme is rather

1https://www.earthsystemdatalab.net/
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arbitrary and there exists no universal standard. In society, we typically measure an extreme event by the impact it has
on society however physically this meaning can be different which poses a challenge for machine learning algorithms.
On the other hand, the unsupervised family of algorithms make use of unlabeled data to assign a score to each sample
and how it compares to the normality of the data distribution. We also specifically are looking for droughts which is one
type of extreme in the hypothesis space of all extreme events. Therefore to obtain optimal results, it would be best to
include known information (labels) about the drought events or a trusted proxy (SMADI) to help aid the results (figure
1). In this paper, we focus on utilizing unsupervised learning algorithms and comparing how the results are similar to
the SMADI drought index. The SMADI index has been shown to be effective at characterizing droughts including their
intensity. If there is indeed a link between the SMADI outcomes and the unsupervised learning methods, we hope to
use the SMADI index as either an empirical feature or as a constraining factor to narrow the extreme detection scope to
only droughts.

2 Methods

This section gives a general overview of the datasets, variables and propsoed methodologies used to answer the following
research question: can unsupervised learning ML methods capture drought events?

2.1 Study Areas

We emulated the study area found in the original datasets for applying SMADI [8]. In this paper, we display preliminary
results for two study areas: the contingious US area (CONUS) and the area of Russia for the time frame of 2010-2016.
The CONUS area has many drought events of varying intensities where the most intense events occurring towards the
years 2013-2016. The Russian drought has a major drought event that occurs for the year 2012 which was the target
characterization; in addition there was a severe heatwave in 2010 [9].

2.2 Variables

We selected four parameters related to the aspects of the drought: they include land surface temperature (LST), the
normalized difference vegetation index (NDVI), the surface soil moisture (SM) and the Vegetation optical depth (VOD).
The LST, NDVI and SM are variables that were used to effectively capture drought in the original study [4] and
combined, these variables have been shown to effectively capture drought events. We use the Soil Moisture Agricultural
Drought Index (SMADI) index as an assessment (proxy) variable to assess how well the machine learning algorithms
performed. SMADI itself captures the lag between soil moisture conditions and plant response and it is scalable in
space and time as it is a linear operation to calculate. It only utilizes the same three variables mentioned previously
by empirically capturing the soil moisture deficit, the thermal stress and the unhealthy vegetation. As mentioned in
the introduction, the previous study [4] found that it performed well compared to the Crop Moisture Index (CMI)
and the Soil Water Deficit (SWD) [5] so it is trusted in the soil moisture community. The VOD comes from the
L-Band microwave emissivity from the daily SMOS sensor [3, 10]. It measures attenuation due to canopy biomass
and water content which offers the following advantages: a) it is distinct from greenness offering more information, b)
it is not affected by atmospheric conditions/clouds, and c) it is sensitive to biomass and water-uptake dynamics. The
sub-hypothesis is that L-Band VOD captures drought-induced crop water stress and thus will aid in the detection
of drought events for the unsupervised Machine Learning algorithms.

We normalized all datasets (SM, LST, NDVI, and VOD) and then did a cubic interpolation for all of the signals to fill in
the NAN values. As a simple preliminary experiment, we chose three time stamps as features (three 8-day cycles - 24
days in total). So every observation assumes we know the previous three observations in time (not space). We also used
the entire time-frame as inputs (2011-2016). We applied a Savitzky-Golay filter with a time window length of 5 for
the VOD dataset. We performed the ML algorithms with just the three original datasets (SM, LST, NDVI) and also
performed the ML algorithms on the same three original variables with the inclusion of VOD (SM, LST, NDVI, VOD).
The results are summarized and compared in the next section.

2.3 Machine Learning Integration

In this section, we elaborate on the tools used to expand upon the inclusion of just VOD and SMADI. We chose use two
unsupervised clustering methods to perform anomolous detection for drought events.

The first algorithm is a simple Local Outlier Factor (LOF) [11] which is a well-known distance based approach. Given
some data point x, the LOF algorithm computes some outlier score d(x) based on the Euclidean distance d between
x and its kth nearest neighbour. The scoring takes into account each of its n neighbours. Those points that have less
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(a) (b)

Figure 2: California yearly drought for 2011 - 2016. (a) shows a group of averaged pixels for the red star located on (b).

amount of neighbours or a total community distance will be labeled as outliers. This method is known to perform well
versus other known methods such as the Angle-Based Outlier Detection (ABOD) algorithm as well as the One-Class
Support Vector Machine (OCSVM) algorithm when applied to real-world datasets. It is also relatively fast and only
depends on the nearest neighbours component as a bottleneck (which exists many approximation techniques). The
implementation was used from the general purpose outlier detection toolbox [12].

The second algorithm used was the Hierarchical Density-Based Spatial Clustering (HDBSCAN) [13]. This algorithm
performs a hierarchical density based scheme which finds clusters of varying densities. It is very similar to the original
Density-Based Spatial Clustering (DBSCAN) algorithm but with more robust parameter selection agenda (i.e. little or
no parameter tuning). It’s an ideal state-of-the-art (SOTA) algorithm for exploratory analysis. The implementation used
can be found in the specific algorithm package [14].

2.4 ESDL Platform

We chose to work with the ESDL platform because it would allow us to have access to over 40+ variables over the
span of 10+ years. It is a convenient way to do exploratory analysis in an all python environment (as well as R and
Julia) without the need to worrying about package management or cluster accessibility. The variables we intended to
use were the land surface temperature (LST), the Normalized Difference Vegetation Index (NDVI), and the root soil
moisture (SM). We also observed a section on the webpage which expressed interest in incorporating direct access to
the EM-DAT; a database which documents areas where there are societal catastrophes. Unfortunately, the study time
period was during 2010 until 2016 which is outside the range of a few variables. The reason is because that is when the
SMADI indices were calibrated so we wanted to make a fair comparison between the two. Regardless, we made use of
the platform for many preliminary studies and to prototype many approaches to dealing with the EO data.

3 Results

3.1 California Drought

Here we see that the SMADI integration of SM, NDVI, and LST is key to detect droughts with drought severity
categories which could possibly be better aligned with EM-DAT. Furthermore, the VOD time evolution reflects drought-
induced crop water stress. We can see that the drought conditions are found each year but the severity is higher for the
latter years.

We see that there is some correspondence between the SMADI indices and the unsupervised learning methods. We also
see that the severity changes for 2014 with the addition of VOD for the LOF algorithm but not much for the HDBSCAN
algorithm.

4
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(a) (b) (c)

Figure 3: California yearly drought for 2011 - 2016. The (a) SMADI results compared to (b) simple LOF algorithm and
(c) the HDBSCAN algorithm. The solid green line are the original variables (LST, SM and NDVI) and the solid black
line includes the VOD variable. The dotted green line represents the top 5% least likely events (a.k.a. anomalies) for
the combined variables without VOD and the dotted black line represents the top 5% least likely events with VOD.

(a) (b)

Figure 4: Russian drought in 2012 (June - September). (a) shows a group of averaged pixels for the red star located on
(b).

(a) (b) (c)

Figure 5: Russian drought in 2012 (June - September). The (a) SMADI results compared to (b) simple LOF algorithm
and (c) the HDBSCAN algorithm. The solid green line are the original variables (LST, SM and NDVI) and the solid
black line includes the VOD variable. The dotted green line represents the top 5% least likely events (a.k.a. anomalies)
for the combined variables without VOD and the dotted black line represents the top 5% least likely events with VOD.

3.2 Russian Drought

Here we see that the extreme drought of 2012 (EM-DAT) was undetected by SMADI. There was some correspondence
between VOD and the other variables which give rise to the prediction of the droughts. This is evident in figure 5 where
we see that there are some drought events that were detected by HDBSCAN and LOF. The LOF actually exhibited
more changes with the addition of VOD than the HDBSCAN method overall.

5
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4 Discussion

4.1 Preliminary Results

We found that the inclusion of VOD as a feature has observable indicators of drought events when compared to the
traditional land surface temperature, NDVI and soil moisture features. There is substantial evidence that VOD can help
the detection of drought occurrences and possibly other extreme events in nature; thereby justifying the use of it in
modeling efforts.

We have also seen that there is indeed some correspondence between the unsupervised ML anomaly detection algorithms
and the SMADI indices. We have shown that the ML algorithms (although unsupervised) were successfully able to
detect drought events in the 2 scenarios of constant drought occurrences such as Sahel and more distinct drought
occurrences such as CONUS. It should be noted that many ML algorithms have a trade off between simplicity and
complexity so one needs to be careful when employing such algorithms blindly to applications. We have demonstrated
that for two different approaches (LOF and HDBSCAN) with two different modeling philosophies, they were still able
to detect extreme events. However, the LOF method saw more improvement (or at least correspondence to the SMADI
indices and specific event of the Russian drought of 2012) than the HDBSCAN algorithm.

Our preliminary results were presented in the ESA Living Planet Seminary 2019 where there was great interest in the
SMADI indices as well as the inclusion of VOD for extreme events. Due to the interest in the SMADI indices, the data
was open-sourced which can be found here 2. We welcome the collaboration opportunity to include SMADI as well
as the VOD data into the ESDL if there is interest as we think it would be very valuable to the community and worth
exploring further; especially for drought detection.

4.2 Future Work

The immediate next steps would be to add more features to the inputs to the learning algorithms. For this particular
application and proof of concept, we only used single spatial location values with a time window of 3 cycles (24 days in
the past). We know that time plays an important role in the detection of droughts but we would like to see if spatial
pixel values impact the results so we would like to incorporate spatial attributes to the training data. We would like to
extend the time window range as well as the spatial range and see what the trade-off is between the methods. It also
does not hurt to add more variables that could potentially aid the detection of drouhgts.

We would also like to work with the EM-DAT database and use these as labels for training some ML algorithms. This
would convert the unsupervised learning problem into a (semi-)supervised learning or physics-guided problem but it
would allow us to constraint the results so that we can hopefully detect drought events more accurately. In doing so, we
can do some more advanced and thorough statistical comparisons between the results of our learning algorithms and the
EM-Dat (as well as SMADI).

We would like to add an additional algorithmic family based on advanced density estimation. This method works
by transforming any high-dimensional, multi-variate distribution by way of the change of variables formula. In
doing so, this allows us to calculate a complete distribution and therefore characterize the data. We can look at the
information content of this density and try to find some correlation between the variables chosen and the droughts
found. Furthermore, this is the perfect opportunity to experiment with this class of generative models (i.e. Normalizing
Flows) which are very prevalent in the community but have rarely been explored with physical data for extreme events
detection.

We plan to have more recent results at the upcoming Phi-Week event in September, 2019 and have submitted a draft to
the Climate Informatics workshop, October 2019. We hope that these results will eventually culminate into a journal
publication.

5 Assessment of Platform

5.1 Assessment of ESDL

Overall, I believe the ESDL platform is a bit step in the right direction. The fusion of AI and Climate change initiative
is a huge effort (citation) that is taking place right now so common platforms such as this one offer a very important
bridge between different communities (applied and ML). (See pangeo 3 as another example). As a practitioner of ML, it

2zenodo.org
3https://pangeo.io/

6

https://zenodo.org/record/3247649##.XQp1ZC0rzVo
https://pangeo.io/


A PREPRINT - JULY 19, 2019

is very convenient for me to have all of the variables stored in a single location where I can access them at will. Python
is also a very popular programming language with many different libraries to accomplish almost all of the necessary
tasks possible.

There were a few difficulties we faced when doing our project but I attribute most of them to the fact that the platform is
still young and undergoing development. The main problem was the data present. I was unaware of the data constraints
so I chose a project where the data we wanted to compare to (SMADI and VOD) had been collected over the range of
2010 until 2016. This is very recent as was chosen because the satellite is fairly new and this is the only data they had
available. There was little to no overlap between some of the variables such as LST and soil moisture. Furthermore,
there were no common indices such as NDVI which I found surprising at it is a commonly used index in the remote
sensing and Earth science community. Obviously one solution would allow everyone to have the ability to upload their
own data but that could exponentially grow if not kept in check. Another possible solution is to develop the API to be
able to call at will (under some reasonable constraints) certain data variables from the ESDL as needed to allow some
uses to work locally.

5.2 Reproducibility

There were a few challenges we faced when using the ESDL system as highlighted above. Most of them were
programmatic and we attribute them to the fact that we are still a fairly small community using the ESDL system.
Furthermore, the xarray package is still fairly young and there aren’t that many tutorials on how to use it effectively;
especially in the machine learning context. One of the most important problems I encountered was the lack of changing
the data from the lat-lon-time format to the samples-features and labels format which is needed form ML algorithms.
It’s also essential that this method be efficient as the ESDL is a large database. I also needed a fast and efficient function
to transform the data to add spatial-temporal features. It works like collapsing a sequence of minicubes into samples
in features of the large datacube. This is absolutely essential for methods that can take into account higher order
spatial-temporal (and even spectral) respresentations of data (e.g. density estimation). Please see the github repository 4

for some of the helper functions I have created.
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